

python-atomicwrites

[image: _images/python-atomicwrites.svg]
 [https://travis-ci.org/untitaker/python-atomicwrites][image: _images/master.svg]
 [https://ci.appveyor.com/project/untitaker/python-atomicwrites/branch/master]Atomic file writes.

from atomicwrites import atomic_write

with atomic_write('foo.txt', overwrite=True) as f:
 f.write('Hello world.')
 # "foo.txt" doesn't exist yet.

Now it does.

See API documentation [https://python-atomicwrites.readthedocs.io/en/latest/#api] for more
low-level interfaces.

Features that distinguish it from other similar libraries (see Alternatives and Credit):

	Race-free assertion that the target file doesn’t yet exist. This can be
controlled with the overwrite parameter.

	Windows support, although not well-tested. The MSDN resources are not very
explicit about which operations are atomic. I’m basing my assumptions off a
comment [https://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/449bb49d-8acc-48dc-a46f-0760ceddbfc3/movefileexmovefilereplaceexisting-ntfs-same-volume-atomic?forum=windowssdk#a239bc26-eaf0-4920-9f21-440bd2be9cc8]
by Doug Crook [https://social.msdn.microsoft.com/Profile/doug%20e.%20cook], who appears
to be a Microsoft employee:

Question: Is MoveFileEx atomic if the existing and new
files are both on the same drive?

The simple answer is “usually, but in some cases it will silently fall-back
to a non-atomic method, so don’t count on it”.

The implementation of MoveFileEx looks something like this: […]

The problem is if the rename fails, you might end up with a CopyFile, which
is definitely not atomic.

If you really need atomic-or-nothing, you can try calling
NtSetInformationFile, which is unsupported but is much more likely to be
atomic.

	Simple high-level API that wraps a very flexible class-based API.

	Consistent error handling across platforms.

How it works

It uses a temporary file in the same directory as the given path. This ensures
that the temporary file resides on the same filesystem.

The temporary file will then be atomically moved to the target location: On
POSIX, it will use rename if files should be overwritten, otherwise a
combination of link and unlink. On Windows, it uses MoveFileEx [https://msdn.microsoft.com/en-us/library/windows/desktop/aa365240%28v=vs.85%29.aspx] through
stdlib’s ctypes with the appropriate flags.

Note that with link and unlink, there’s a timewindow where the file
might be available under two entries in the filesystem: The name of the
temporary file, and the name of the target file.

Also note that the permissions of the target file may change this way. In some
situations a chmod can be issued without any concurrency problems, but
since that is not always the case, this library doesn’t do it by itself.

fsync

On POSIX, fsync is invoked on the temporary file after it is written (to
flush file content and metadata), and on the parent directory after the file is
moved (to flush filename).

fsync does not take care of disks’ internal buffers, but there don’t seem
to be any standard POSIX APIs for that. On OS X, fcntl is used with
F_FULLFSYNC instead of fsync for that reason.

On Windows, _commit [https://msdn.microsoft.com/en-us/library/17618685.aspx]
is used, but there are no guarantees about disk internal buffers.

Alternatives and Credit

Atomicwrites is directly inspired by the following libraries (and shares a
minimal amount of code):

	The Trac project’s utility functions [http://www.edgewall.org/docs/tags-trac-0.11.7/epydoc/trac.util-pysrc.html],
also used in Werkzeug [http://werkzeug.pocoo.org/] and
mitsuhiko/python-atomicfile [https://github.com/mitsuhiko/python-atomicfile]. The idea to use
ctypes instead of PyWin32 originated there.

	abarnert/fatomic [https://github.com/abarnert/fatomic]. Windows support
(based on PyWin32) was originally taken from there.

Other alternatives to atomicwrites include:

	sashka/atomicfile [https://github.com/sashka/atomicfile]. Originally I
considered using that, but at the time it was lacking a lot of features I
needed (Windows support, overwrite-parameter, overriding behavior through
subclassing).

	The Boltons library collection [https://github.com/mahmoud/boltons]
features a class for atomic file writes, which seems to have a very similar
overwrite parameter. It is lacking Windows support though.

License

Licensed under the MIT, see LICENSE.

API

	
atomicwrites.atomic_write(path, writer_cls=<class 'atomicwrites.AtomicWriter'>, **cls_kwargs)

	Simple atomic writes. This wraps AtomicWriter:

with atomic_write(path) as f:
 f.write(...)

	Parameters

	
	path – The target path to write to.

	writer_cls – The writer class to use. This parameter is useful if you
subclassed AtomicWriter to change some behavior and want to
use that new subclass.

Additional keyword arguments are passed to the writer class. See
AtomicWriter.

Errorhandling

All filesystem errors are subclasses of OSError [https://docs.python.org/3/library/exceptions.html#OSError].

	On UNIX systems, errors from the Python stdlib calls are thrown.

	On Windows systems, errors from Python’s ctypes are thrown.

In either case, the errno attribute on the thrown exception maps to an
errorcode in the errno module.

Low-level API

	
atomicwrites.replace_atomic(src, dst)

	Move src to dst. If dst exists, it will be silently
overwritten.

Both paths must reside on the same filesystem for the operation to be
atomic.

	
atomicwrites.move_atomic(src, dst)

	Move src to dst. There might a timewindow where both filesystem
entries exist. If dst already exists, FileExistsError [https://docs.python.org/3/library/exceptions.html#FileExistsError] will be
raised.

Both paths must reside on the same filesystem for the operation to be
atomic.

	
class atomicwrites.AtomicWriter(path, mode='w', overwrite=False, **open_kwargs)

	A helper class for performing atomic writes. Usage:

with AtomicWriter(path).open() as f:
 f.write(...)

	Parameters

	
	path – The destination filepath. May or may not exist.

	mode – The filemode for the temporary file. This defaults to wb in
Python 2 and w in Python 3.

	overwrite – If set to false, an error is raised if path exists.
Errors are only raised after the file has been written to. Either way,
the operation is atomic.

If you need further control over the exact behavior, you are encouraged to
subclass.

	
commit(f)

	Move the temporary file to the target location.

	
get_fileobject(suffix='', prefix='tmp', dir=None, **kwargs)

	Return the temporary file to use.

	
open()

	Open the temporary file.

	
rollback(f)

	Clean up all temporary resources.

	
sync(f)

	responsible for clearing as many file caches as possible before
commit

License

Copyright (c) 2015-2016 Markus Unterwaditzer

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 atomicwrites	

Index

 A
 | C
 | G
 | M
 | O
 | R
 | S

A

 	
 	atomic_write() (in module atomicwrites)

 	
 	AtomicWriter (class in atomicwrites)

 	atomicwrites (module)

C

 	
 	commit() (atomicwrites.AtomicWriter method)

G

 	
 	get_fileobject() (atomicwrites.AtomicWriter method)

M

 	
 	move_atomic() (in module atomicwrites)

O

 	
 	open() (atomicwrites.AtomicWriter method)

R

 	
 	replace_atomic() (in module atomicwrites)

 	
 	rollback() (atomicwrites.AtomicWriter method)

S

 	
 	sync() (atomicwrites.AtomicWriter method)

 Source code for atomicwrites

import contextlib
import io
import os
import sys
import tempfile

try:
 import fcntl
except ImportError:
 fcntl = None

`fspath` was added in Python 3.6
try:
 from os import fspath
except ImportError:
 fspath = None

__version__ = '1.4.0'

PY2 = sys.version_info[0] == 2

text_type = unicode if PY2 else str # noqa

def _path_to_unicode(x):
 if not isinstance(x, text_type):
 return x.decode(sys.getfilesystemencoding())
 return x

DEFAULT_MODE = "wb" if PY2 else "w"

_proper_fsync = os.fsync

if sys.platform != 'win32':
 if hasattr(fcntl, 'F_FULLFSYNC'):
 def _proper_fsync(fd):
 # https://lists.apple.com/archives/darwin-dev/2005/Feb/msg00072.html
 # https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man2/fsync.2.html
 # https://github.com/untitaker/python-atomicwrites/issues/6
 fcntl.fcntl(fd, fcntl.F_FULLFSYNC)

 def _sync_directory(directory):
 # Ensure that filenames are written to disk
 fd = os.open(directory, 0)
 try:
 _proper_fsync(fd)
 finally:
 os.close(fd)

 def _replace_atomic(src, dst):
 os.rename(src, dst)
 _sync_directory(os.path.normpath(os.path.dirname(dst)))

 def _move_atomic(src, dst):
 os.link(src, dst)
 os.unlink(src)

 src_dir = os.path.normpath(os.path.dirname(src))
 dst_dir = os.path.normpath(os.path.dirname(dst))
 _sync_directory(dst_dir)
 if src_dir != dst_dir:
 _sync_directory(src_dir)
else:
 from ctypes import windll, WinError

 _MOVEFILE_REPLACE_EXISTING = 0x1
 _MOVEFILE_WRITE_THROUGH = 0x8
 _windows_default_flags = _MOVEFILE_WRITE_THROUGH

 def _handle_errors(rv):
 if not rv:
 raise WinError()

 def _replace_atomic(src, dst):
 _handle_errors(windll.kernel32.MoveFileExW(
 _path_to_unicode(src), _path_to_unicode(dst),
 _windows_default_flags | _MOVEFILE_REPLACE_EXISTING
))

 def _move_atomic(src, dst):
 _handle_errors(windll.kernel32.MoveFileExW(
 _path_to_unicode(src), _path_to_unicode(dst),
 _windows_default_flags
))

[docs]def replace_atomic(src, dst):
 '''
 Move ``src`` to ``dst``. If ``dst`` exists, it will be silently
 overwritten.

 Both paths must reside on the same filesystem for the operation to be
 atomic.
 '''
 return _replace_atomic(src, dst)

[docs]def move_atomic(src, dst):
 '''
 Move ``src`` to ``dst``. There might a timewindow where both filesystem
 entries exist. If ``dst`` already exists, :py:exc:`FileExistsError` will be
 raised.

 Both paths must reside on the same filesystem for the operation to be
 atomic.
 '''
 return _move_atomic(src, dst)

[docs]class AtomicWriter(object):
 '''
 A helper class for performing atomic writes. Usage::

 with AtomicWriter(path).open() as f:
 f.write(...)

 :param path: The destination filepath. May or may not exist.
 :param mode: The filemode for the temporary file. This defaults to `wb` in
 Python 2 and `w` in Python 3.
 :param overwrite: If set to false, an error is raised if ``path`` exists.
 Errors are only raised after the file has been written to. Either way,
 the operation is atomic.

 If you need further control over the exact behavior, you are encouraged to
 subclass.
 '''

 def __init__(self, path, mode=DEFAULT_MODE, overwrite=False,
 **open_kwargs):
 if 'a' in mode:
 raise ValueError(
 'Appending to an existing file is not supported, because that '
 'would involve an expensive `copy`-operation to a temporary '
 'file. Open the file in normal `w`-mode and copy explicitly '
 'if that\'s what you\'re after.'
)
 if 'x' in mode:
 raise ValueError('Use the `overwrite`-parameter instead.')
 if 'w' not in mode:
 raise ValueError('AtomicWriters can only be written to.')

 # Attempt to convert `path` to `str` or `bytes`
 if fspath is not None:
 path = fspath(path)

 self._path = path
 self._mode = mode
 self._overwrite = overwrite
 self._open_kwargs = open_kwargs

[docs] def open(self):
 '''
 Open the temporary file.
 '''
 return self._open(self.get_fileobject)

 @contextlib.contextmanager
 def _open(self, get_fileobject):
 f = None # make sure f exists even if get_fileobject() fails
 try:
 success = False
 with get_fileobject(**self._open_kwargs) as f:
 yield f
 self.sync(f)
 self.commit(f)
 success = True
 finally:
 if not success:
 try:
 self.rollback(f)
 except Exception:
 pass

[docs] def get_fileobject(self, suffix="", prefix=tempfile.gettempprefix(),
 dir=None, **kwargs):
 '''Return the temporary file to use.'''
 if dir is None:
 dir = os.path.normpath(os.path.dirname(self._path))
 descriptor, name = tempfile.mkstemp(suffix=suffix, prefix=prefix,
 dir=dir)
 # io.open() will take either the descriptor or the name, but we need
 # the name later for commit()/replace_atomic() and couldn't find a way
 # to get the filename from the descriptor.
 os.close(descriptor)
 kwargs['mode'] = self._mode
 kwargs['file'] = name
 return io.open(**kwargs)

[docs] def sync(self, f):
 '''responsible for clearing as many file caches as possible before
 commit'''
 f.flush()
 _proper_fsync(f.fileno())

[docs] def commit(self, f):
 '''Move the temporary file to the target location.'''
 if self._overwrite:
 replace_atomic(f.name, self._path)
 else:
 move_atomic(f.name, self._path)

[docs] def rollback(self, f):
 '''Clean up all temporary resources.'''
 os.unlink(f.name)

[docs]def atomic_write(path, writer_cls=AtomicWriter, **cls_kwargs):
 '''
 Simple atomic writes. This wraps :py:class:`AtomicWriter`::

 with atomic_write(path) as f:
 f.write(...)

 :param path: The target path to write to.
 :param writer_cls: The writer class to use. This parameter is useful if you
 subclassed :py:class:`AtomicWriter` to change some behavior and want to
 use that new subclass.

 Additional keyword arguments are passed to the writer class. See
 :py:class:`AtomicWriter`.
 '''
 return writer_cls(path, **cls_kwargs).open()

 All modules for which code is available

	atomicwrites

 _static/up.png

nav.xhtml

 Table of Contents

 		
 python-atomicwrites

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

